check_data(data: pl.DataFrame, resource_properties: ResourceProperties)
Check that the DataFrame matches the requirements in the resource properties.
Run a few checks to compare between the data and the properties on the items:
| Column names |
field.name |
| Column types |
field.types |
| Column values’ types |
field.types |
| Column values’ constraints |
field.constraints |
The error messages are generally in the format of:
# {data item}:
There is a mismatch found:
- In the properties: {mismatch}
- In the data: {mismatch}
Parameters
data : pl.DataFrame
-
A Polars DataFrame.
resource_properties : ResourceProperties
-
The specific ResourceProperties for the data.
Returns
pl.DataFrame
-
The data if checks all pass.
Raises
ExceptionGroup[CheckError]
-
If the resource properties are incorrect.
ValueError
-
If column names in the data are incorrect.
ExceptionGroup[ValueError]
-
If data types in the data are incorrect.
Examples
import seedcase_sprout as sp
sp.check_data(
data=sp.example_data(),
resource_properties=sp.example_resource_properties()
)
shape: (3, 3)
| i64 |
str |
f64 |
| 34 |
"Helly R" |
123.123 |
| 99 |
"Mark S" |
9988.0 |
| 100 |
"Ms Casey" |
-76.0009 |